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We consider a Langmuir-Hinshelwood reaction on a catalytic surface with two monomer reactants
A and B whose reaction product leaves the surface: A + B — 0. We allow different adsorption and
desorption rates for the two reactants. When adsorption and reaction are fast events compared to
desorption (and in the absence of diffusion), we can use an approximate mapping onto a two-state
spin model that we solve using a decoupling scheme. We compute the steady-state reaction rate
and compare it to Monte Carlo simulations. We show explicitly how spatial fluctuations affect the
behavior and that the predictions of the spin model give a reasonable theory for the system.
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I. INTRODUCTION

Though catalytically activated processes have been
known for a very long time, there are still phenomena
in the field that remain a challenge for fundamental re-
search. One of the most active areas is the study of col-
lective effects, such as fluctuations and spatial organiza-
tion of reactants, as opposed to the traditional approach,
which focuses on local energetic considerations. There is
now a large literature on models that include stochastic
effects in catalysis [1,2]. These are intended to investigate
fluctuations and correlations. One of the best known ex-
amples is the simple monomer-dimer model of Ziff et al.
[1] for the catalysis of COs.

A still simpler stochastic model which nevertheless
shows many fascinating statistical effects was proposed
by Fichthorn, Gulari, and Ziff (FGZ) [2]. It considers
a system with two monomer species on a surface which
react and annihilate when they encounter one another,
i.e., A+ B — 0. The particles are assumed to adsorb and
desorb with rates that are the same for the two species.
The system is reaction-limited: any empty sites are im-
mediately filled. The reaction-limited symmetric FGZ
model was solved exactly by Clément, Leroux-Hugon,
and Sander [3] on any Euclidean lattice, and an extension
of the solution to disordered lattices has been proposed
by Clément, Leroux-Hugon, and Argyrakis [4]. Kapivski
[5] and also Flament et al. [6] have solved a related dy-
namical problem This monomer-monomer model has also
been considered by Evans and Ray [7].

Here we extend the FGZ model to the situation where
the two desorption and adsorption rates are different, and
we allow for the possibility that not all sites are filled.
We will find many interesting features for this generalized
model. In alimiting case, i.e., when the surface is covered
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by the two species, we propose an analysis based on our
previous solution. This involves a two-state spin model.
This model is solved using a decoupling approximation at
the three-particle correlation level. We compare these re-
sults to a mean-field (MF) solution. We show, in contrast
to MF predictions that there is an important dependence
on dimensionality, and we give a scaling argument that
extends the results to fractal structures. We will test our
predictions by doing Monte Carlo simulations.

Albano [8] considered the dynamics of a special case of
our model showing a Schlégl second order transition [9].
He did simulations on a percolation cluster to test for a
possible new universality class and found a new exponent.
This has been disputed by Zhuo and Redner [10] who
claim that the model should be in the well-known class
of directed percolation, since there is a transition to a
single absorbing state [12].

In the next section we introduce the model and work
out the MF theory. Then we give our solution to the
spin model. In the last section we compare Monte Carlo
simulations to our approximate solution.

II. GENERALIZED REACTION MODEL
A. Description

Consider two different species A and B absorbed on
a catalytic surface that is a d-dimensional lattice. We
consider a reaction scheme of the Langmuir-Hinshelwood
type with three steps:

Adsorption: [(probability)/(time)]/(site), Pa, Pg:

A* 4 [z] > A,
B* +[z] > B.
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Desorption: [(probability)/(time)]/(site), P$, Pa:

A [z] + A%,
B — [z] + B*.

Reaction:
A+ B — [z] + [z] + AB*.

The probabilities, PA,B,P“}’ g are parameters in the
model. The symbol * means a species in the gas phase
and [z] means a free site. We assume a fast time scale
for the reaction and even a faster one for the adsorption.
Since there is no diffusion we are free to use the reaction
rate to define the time scale. The different feature of this
model as compared to FGZ is the asymmetry of the rates
Py p and Pj{, pg- To parametrize this we introduce a set
of three variables (z,y,p), where Py = (1—z)/2, Pp =
(1+2)/2, P{=pQ1+y)/2, P§=p(l—y)/2. The
FGZ model is recovered by making P4 = Pg = 1/2 and
Pg = Pg , i.e., z = y = 0. The lattice is a regular d-
dimensional quadratic lattice with N = L? lattice sites
and coordination number 2d.

The model we propose here may appear too simple
to give any insight into real catalysis. However, despite
its simplicity it has rather unusual collective effects that
could occur in the real world, and which might be missed
in the context of a more complicated system. Specifi-
cally, our model shows interesting behavior as the result
of confinement and geometrical disorder, which are com-
plications very commonly encountered in surface science.

B. Mean-field theory

A preliminary report on Monte Carlo simulations of
this model [11] illustrated anomalous behavior for the
reaction rate. Below we derive an expression showing
explicitly how classical chemical kinetics fails. In this
section, however, we consider the classical MF theory.

In MF reaction kinetics, the reaction rate is the prod-
uct of the reactant concentrations. This assumption does
not consider any of the spatial correlations that may oc-
cur at a mesoscopic level on the substrate [11]. In MF
our reaction model is described by the following set of
nonlinear coupled equations:

dpa/dt = —kpapp + Pa(l — pa — pB) — P4pa ,
dpp/dt = —kpapp + Pa(1 — pa — pB) — Pgps , (1)

where p4, pp are, respectively, the densities of 4 and B,
and where k represents the probability/time of reaction
when two species are in contact. We take k to be a
number of the order of unity. We will use variables p =
pa+pB , the total coverage; v = p4 — pp , the difference
concentration; and @ = kpapp , the reaction rate.

In the steady state, the solution is easy to write:

4zQ z+y
= 4 )
p(l1+zy) " p(l+zy)

(2)

Y
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_1-2Q+pxy/2
P T ptp2) ®)

Q=20 - (@)

The total coverage obeys a quadratic equation, ap? —
bp + ¢ = 0, where u = z/p is a reduced variable and the
coefficients of the quadratic equation are

a(u,y) = g(l — 4u® + quy — y?) , (5)
b(u,y) =1+ 2ku(2u —y) + g(l + 2uy — y?%) , (6)

c(u,y) = —(1 + 2ku® + uyp) . (7)

The particle difference concentration is given by v =
2u(p—1) — py.

Equations (5) — (7) show that when p — 0, the rele-
vant variable is the reduced parameter u = z/p. When
u € —1 we have p = 1,7 =~ 1. This is an A domi-
nated regime. When u > 1 we have p~ 1,y ~ —1;a B
dominated regime. In these cases the surface is covered
predominantly by one of the species and is weakly reac-
tive. The reactive zone occurs when A and B coexist,
i.e., for values of z in the neighborhood of z = 0. The
width of this zone is given by |z/p| < 1. The exact shape
of the reaction curves and the density curves depend on
the value of y. The relation u ~ 1 defines the width of the
reactive regime. Note that for small p the total density
p is always of the order unity.

The case of y = +1 plays a special role because at these
points one species cannot desorb at all, and the system
can have an absorbing (or poisoned) state of, say, all
B. The transition to this state looks like a second order
phase transition [9]. The reaction rate Q may be thought
of as the order parameter. This is close to the model that
was investigated by Albano [8] and Zhuo and Redner [10].
(Note that in their case the desorption probability is of
the order of unity: we will always consider small p.) We
will discuss this case further below.

III. SPIN MODEL
A. Description

On the time scale of the reaction, for p < 1, there is a
probability close to unity for an empty site to be replaced
by either A or B: an empty lattice site has a short life-
time. In view of this it is natural to map the model onto
a system of spin-1/2 particles on the lattice with < A
and |< B. The dynamics of this two-state model is as
follows: For each time step, a lattice site is chosen at
random and desorption is tried with a probability P$
if the site is occupied by A, B. If desorption occurs the
site is then filled by A or B according to the adsorption
probabilities. If no desorption occurs, a direction is cho-
sen at random among all the nearest neighbors. If the
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nearest neighbor is occupied by the opposite species, then
a reaction takes place. Each of the vacant sites is then
replaced by a species A or B with probability P4, P
(here, P4+ Pp = 1). The order of taking desorption first
and then reaction is different from other authors [2,8], as
is our convention of only trying one random direction for
a reaction. Both of these changes alter the simulation
results only slightly, and make the theory much easier to
formulate.

Let the spin variable at site ¢ be z; taking a value
+1. The dynamics of this model is easily represented
using a master equation. The combination of reaction
and adsorption can leave a nearest neighbor pair (i, j)
unchanged, flip both spins (we call this exchange), flip ¢
(flip), or flip j (transfer). We can then write down the
transition probabilities, wg, wg, wr to go into the master
equation:

{zi 25} = {—2, -2},
wg= (1 — 2%)(1 — 2;2;)/16d ;
{Zi,Zj} — {—Zi, Zj},
wp= (1+z® + 2z2;)(1 — 2;2;)/16d ;
{zi, 25} = { 2i, -2},
wr= (1 + 2% — 2z2;)(1 — 2;2;)/16d . (8)

Desorption is governed by a transition probability wp:

{z:} = {-=i},
wp= 2l +ay+ (@ +y)z] . (9)

The master equation for configuration probability,

P{z},is
Pla} = 303 wxdeh 2 }P{'} — wx {262} P{2)

(i) X

+pr{—z,-}P{—zj} —wp{z}P{z}, (10)

where (ij) means that ¢, are nearest neighbor sites, X
runs over E, F,T, and 2’ is the spin variable before the
process occurs. From this equation we will derive a hier-
archy of equations for the moments of the spin variable.

B. Moment equations
1. First moment

Using standard techniques, we calculate the equation
of motion for the first moment, y; = E{z} z;P{z}. We
obtain

c(lil = DA;y; — 8(1 + zy)vy; — g(w +y)—2zQ; . (11)
i 2 2

Equation (11) looks like a diffusion equation with D =
1/2d an effective diffusion constant; A; is the discrete
Laplacian operator. The existence of an effective diffu-
sion constant at a macroscopic level is somewhat unsus-
pected. It has the simple physical interpretation that
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reaction plus adsorption can effectively diffuse the spins,
even in the absence of explicit diffusion. Q; is a local
reaction rate: Q; = DY (1 — (zizit+a))/2, where a runs
over the nearest neighbors (which can react).

After summation over the whole space we get the first
moment equation for y = Y. v;/N, where Q = 3. Q;/N.
We find

dy

y4 p
E_—§(1+wy)'y——2—(w+y)—2wQ- (12)

The dependence on @ couples this equation to higher
moments.

2. Second moment

Similarly, we can calculate the equation of motion for
the second moments (z;2; () = E{z} z;ziyk P{z} . We
obtain the following after averaging over space and using
the notation my = Y, (zizi4x)/N:

dt

e 2DAymy, — 4DxTy, — p(1 + zy)mi — p(z + y)y
k

+[4Q + p(1 + zy) + p(z + ¥)V]0k,0
_2D(1 - :Ez)Q Z ‘sk,a ] (13)

where a again denotes the nearest neighbors. This equa-
tion contains a third order correlation function: T} =
> i > o (Zitr(l — 2z;zi1a)) /(2N). This term couples the
equation for the second moment my, to higher orders. We
should note that for x = 0 the coupling vanishes. Our
equation is an exact solution for the second moment of
the spin model for any y in the case of symmetric ad-
sorption. From the definition of the reaction rate above,
we have

Q=D>(1- ma)/Z. (14)

3. Decoupling

Equations (12) — (14) do not form a closed set. In order
to have a tractable set of equations, we must decouple T¥.
We propose the following simple scheme:

DTy = Q’y(l — 5k,0) . (15)

This ansatz assumes that  and ~ are uncoupled, and
relates T to the product of a reaction rate at 7 and the
mean population, v, at ¢ + k. The § function takes into
account the fact that Ty = 0.

We now have a set of equations that couple v, my, and
Q. We will be interested in the steady state of the system
in this paper, so we will write them down in detail only
for that case.

C. Steady state
1. General solution

In the steady state, we can solve Eq. (12) for the first
moment:



¥ = —2zQ/p , (16)

where p = p(1+zy)/2,v = —(z+v)/(1+zy). For large
spatial separations, k, the second moment approaches 2,
so that it is clearly useful to introduce 7y = mp — ~2.
Also, we write Q@ = Q(1 — z2). In terms of these changes
of variables, and using the decoupling of Eq. (15) we

have, in the steady state,

2D Ayt — 21 — 2DQ Y " S a

+28%,0[2Q + p(1 —4?)] = 0. (17)

This equation is similar to the one that was solved in
the symmetric FGZ model [3], and we use the same self-
consistent method. We begin by Fourier transforming:
0q = Y e ¥ 1y = Y 04€'9% /N, we can solve for
o4t

_ 4 QtRU-P) +5(1-7)
p+2D G [1 — cos(q;))

oq , (18)

where Q; = 2(Q — Q) = 2Qx2. The sum in the denom-
inator is over the coordinate directions in d dimensions,
and g; = q - ko where k. are the unit vectors to nearest
neighbors.

Now, o is the spatial average of 7, which in turn
gives a measure of the fluctuations of the populations
N4 . Specifically, if we define the relative fluctuation,

Aap = <(NA —NB)z/N2>, then
1 1 2
AAB=72+UO/N:72+N (1—72+£—+-?—)Q) .
p
(19)

This equation together with Eq. (16) and the self-
consistent value of @ to be derived below can be used
to estimate the anomalous fluctuations for small systems
when p < 1, as in our previous work [3].

The inverse Fourier transform of Eq. (18) gives

m =72 4 [Q1 4+ Q(1 — p) + p(1 — +*)|Fa(, k) ,

1 cos(q - k)
Fa(p, k) = N ; p+2D Zj:l[l — cos(g;)]

(20)

However, my—, is the mean number of nearest neighbors
and gives the reaction rate Q = (1—mg,)/2 [cf. Eq. (14)].
This closes the self-consistency loop and gives the central
result of our analysis:

20=1-9"—[Q1+Q(1—p) + (1 —~+)p|Fs, (21)

where Fy = Fy(p, ko) for any one of the nearest neigh-
bors, and « is expressed in terms of Q in Eq. (16).

The behavior of Fy for small p was studied earlier [3]
in cases when we can replace the sum by an integral:
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Fg—1/4/2p ford =1,
— (1/7)1In(1/p) for d = 2,
~ 1 for d = 3.

Q is the solution of a quadratic equation, aQ? +bQ +c =
0, where the coefficients are

a = 4z*(1 — pF,) /P,
b=2—4dxv,/p + [22% + 1- rcz)(l — P) + 4voz]|Fy,
c=—(1-13)(1 - pFa), (22)

where «y is given in Eq. (16). One can check that the
discriminant of the quadratic equation is always positive.
We are physically constrained to choose the root of the
quadratic such that @ > 0, which is unique unless c = 0.
This, however, is an interesting special case that occurs
for v2 = 1, i.e., y = £1. In this case a trivial poisoned
state exists for every value of z. Because ¢ = 0,Q = 0
is always a solution to the equation, and for a range of «
there is another. We will return to this case below.

2. Unique reactive solution

Now consider the solution for small p when y # +1.
This means that we have a unique reactive steady state.
In the limit p < 1 and for small z we have

a~4:1:2
2’
4
szd'— m:YO )
cr —(1—~2). (23)

We will show here that the reactive zone, i.e., the tran-
sition zone between A dominated and B dominated sys-
tems, is of order pFy(p) ~ /p for d =1, and ~ pln(1/p)
for d = 2. Thus for d < 3 this transition zone is quite dif-
ferent from the mean-field predictions that give a width
of order p.

This is most easily done by defining z* = z/pFy(p).
In Eq. (23) we see that a ~ F2,b ~ Fy,c ~ 1. Then we
find that QFy is a function of =* alone:

QF; = [—-m + /m2 +16[z*]2(1 — 70)] /8[z*]*

m=1—4z*,. (24)

If we can expand the square root, |b| >> /—4ac we have
form >0

Nl—’ygN (1_72)f1 d=1
°~F { (1—8)/In(1/p), d=2, @
and for m < 0
~ de
Q= —W. (26)

The peak of the curve occurs for the latter case for y ~
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—1, a case we will study in the next section.

We will not pursue the study of finite lattice size ef-
fects, mentioned above [cf. Eq (19)] the so-called fluctu-
ation dominated kinetics. To do so it is only necessary to
consider the L dependence of F,; when we do not replace
the sum by an integral [3,4]. This manifests itself in a
bimodal distribution of +.

We should note that the dependence of the reaction
rate on p is an indication of the segregation of the system
of domains rich in A or B [3,11]. In the case where nei-
ther of the species is particularly in excess (the reactive
regime), there is a domain size A such that Q =~ papp/A.
From Eq. (25) we have A > 1. This reduction in reac-
tion rate due to segregation is exactly the kind of effect
that MF approaches are unable to reproduce. In the sec-
tion on simualations, below, we explicitly demonstrate
the onset of segregation.

3. Absorbing solution

Now we consider the special case of y = —1. This
seems to correspond to having a Schlogl transition to an
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absorbing (A poisoned) state. Here we have vy = 1 and
¢ = 0 and two possible solutions: Q = —b/a,Q = 0.
Since a > 0 for b < 0, we have a possible reacting steady
state. We have shown this to be a stable attractor of
the kinetics by linearizing the time-dependent equations
around this state. There are no growing solutions since
the eigenvalues of the linear operator are negative.

For b > 0 the only stable attractor of the kinetics is
the solution Q = 0, which means that the whole lattice
is covered with A. This transition from a reactive state
to a nonreactive state is what we identify as a continuous
phase transition as a function of the transition parameter
xz, with the reaction rate Q as the order parameter. In
the limit of an infinite lattice the critical point z. is the
solution of the equation b(z,p) = 0. In the limit of small
p this gives a z. ~ pF4/4 and Q ~ p(z — z.)/z2.

Thus for d = 1 we have z. = /p/8,Q* = Q/\/P ~
(z* — z), where z* = xz/,/p, as above, is the natural
dimensionless control parameter, and z} = 1/8. In a like
manner, for d = 2 we can put z. = pln(1/p)/8m,z* =
2nz/[pln(1/p)] and Q* = QIn(1/p) ~ (x* — z¥).

If we compare to the naive MF above, we have two
additional features in d = 1,2. The transition is shifted,

O p=0.05, simulation
—— p=0.05, theory
0 p=0.005, simulation
p=0.005, theory
A p=0.0005, simulation
— — - p=0.0005, theory

FIG. 1. (a) Monte Carlo simulation re-
sults for the scaled reaction rate in the spin

model, d = 1. We plot Q* = Q/p
%95 1.0 Z0s 00 05 10 15 versus 2" = z/vp for y = —0.3, and
x* p = 0.05,0.005,0.0005, and compare to
the decoupling approximation. (b) Monte
20 — : : . - Carlo simulation results for scaled reaction
——— p=0.05, theory AAAA (b) rate in the spin model, d = 2. We plot
©p=0.05, simulati * s - . .
e Q" = QIn(1/5) versus z* = a/pIn(1/p) for
0 p=0.005, simulation gt y = —0.3, and p = 0.05,0.005,0.0005, and
15+ ”"Az:g:gggg: ;Tr?]?:,yaﬁon fw m-.\ﬁ 1 compare to the decoupling approximation.
@ 10}
05 | . ]
0.0

-1.5 -1.0 -0.5 0.0 0.5 1.0
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and the width of the transition zone depends on the des-
orption probability and on the spatial dimension in an
unusual way, as above. These features do not occur in
the usual Schlogl model, and correspond to taking a cer-
tain class of correlations and fluctuations into account.
Nevertheless, in all dimensions, the exponent (3 for the
dependence of the order parameter on u is still 1. Our
theory is a mean-field theory for the phase transition and
misses the critical fluctuations [13]. Thus, very near the
transition we expect, and do find in simulations, clusters
of the minority species which grow for a time and ulti-
mately die, and whose distribution of survival times has
a long tail.

D. Generalization to fractal substrates

It is possible to give a detailed argument to generalize
our theory to a fractal structure. This is presented in
detail in a recent article by Clément et al. [4], in the
particular case of a symmetric FGZ model and tested on
percolation clusters. A discussion on the possible limits

S § _ ————
T N Oy= 0.3, simulation
0.25

—— y=0.3, theory

0 y=-0.3, simulation
---- y=-0.3, theory

A y=-0.9, simulation
—— - y=-0.9, theory J

0.20
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of this approach is presented as well. Here it will suffice
to use heuristic approach since we know the origin of
nonclassical behavior for models of this type. These are
a consequence either of spatial organization of reactants
on a substrate due to incomplete mixing—the segregation
we have been discussing, or finite size effects where the
reaction kinetics is fluctuation dominated [3]. In this last
case the topology of the substrate seems irrelevant. Here
we focus on segregation.

A study on catalytic models on fractals can be found
in Ref. [11]. We can try to understand the situation by
proposing that in Eq.(25), the function F; should be re-
placed by a function Fy,(p), where d, is the spectral
dimension of the lattice [3]. To be consistent with the
formalism above, we must define Fy, in such a way that
when p — 0, Fy, goes as p%/2~1, Thus, we think that we
can distinguish two regimes corresponding to the value of
x* = z/p?/2. When |z*| > 1 our fractal will be covered
with one or the other species, and when |z*| < 1 the sys-
tem should be reactive. Proceeding by analogy, we guess
that @ ~ p'~9/2 and that there is segregation up to a
scale A ~ p?e/2=1 We will test this prediction below.

(a)

FIG. 2. (a) Monte Carlo simulation re-
sults for the reaction rate @ in the spin

-0.10 0.00 0.10 0.20

0.30 model, d = 1 for y = 0.3,-0.3,—0.9, and
» = 0.05 compared to the decoupling theory.
(b) Monte Carlo simulation results for the
reaction rate Q in the spin model, d = 2 for

0.40 —— —— —
( —— y=03, theory (b)j‘ y = 0.3,-0.3,-0.9, and p = 0.05 compared
Oy= 0.3, simulation to the decoupling theory.
e - y=-0.3, theory
DRy Oy=-0.3, simulation
b 0 ---- y=-0.9, theory
0.30 - i ©y=-0.9, simulation 1
Q 020 :
0.10 |- e
s o
¢ — )
000,55 -0.1 0.1 0.3
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FIG. 3. Monte Carlo simulation results for
the reaction rate Q in the spin model, d = 1, 2
for y = —1, and p = 0.005 compared to the
decoupling theory.

@% Od=1, simulation
=3} —— d=1, theory
L O d=2, simulation
a E
HE - _d=2, theory
H B
020 | =
=]
ja]
Q - 8]
D
..___q
0.10 | g 4
0.00 iz
0.00

IV. MONTE CARLO SIMULATIONS

In the foregoing the two-state model was solved an-
alytically using decoupling. The validity of the scheme
can be tested directly by performing a series of Monte
Carlo (MC) simulations of the spin model. This we will
do in various cases. However, there is another sort of
simulation: if p is small enough, we should be able to
go back to the full reaction model of the second section,
and show that we have a reasonable account. We present
simulations of this sort as well.

The algorithm describing the reaction model goes as
follows: a site is chosen at random,; if this site is empty a
landing trial of A or B is attempted with relative weight
P4 p. If the site is not empty a desorption trial is at-
tempted with a probability P;{ g depending on the occu-
pation. If no desorption occurs, a direction is chosen at
random. A reaction occurs if the chosen nearest neigh-
bor is of the opposite species. Of course, in this case, the
lattice is not full, and if there are many vacancies, we
cannot expect any agreement with our theory. Neverthe-

less, the general scaling structure of the densities p4,p(x)
and the reaction rate Q(x) can be tested.

Simulations of the spin model were made on three
types of substrate: (i) a one-dimensional (1D) chain of
sites, (ii) a square surface, and (iii) a percolation cluster
at the percolation threshold. Periodic boundary condi-
tions were used and the number of sites was chosen to
be about the same in the three instances. We chose the
simulation conditions so that p < 1 but not so small that
we get large fluctuations due to finite-size effects [3]. In
1D this amounts to having L > 1/,/p.

In Fig. 1(a) we take y = —0.3 and for various p and
plot Q(z) for 1D systems, and similarly in Fig. 2(b) for
2D. The solid lines are the predictions of the decoupling
theory. In order to show the scaling, we have, in fact,
plotted Q* = Q/,/p as a function of z* = z/,/p in 1D
and Q* = QIn(1/p) as a function of z* = =/[pIn(1/p)]
in 2D.

In Figs. 2(a) and 2(b) we give the reaction rate, Q, as
a function of z for various y. A progressive skewing from
a symmetric curve to the second order transition curve
is clearly seen. A direct comparison is made with the

FIG. 4. Rescaled reaction rate on an incip-
ient percolation cluster in 2D for y = —0.3.
We plot Q* = Qp?/?! as a function of
z=%/2 for p = 0.0032,0.00010,0.000032.
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analysis (solid lines). The scaling behavior is reasonably
reproduced. For y = —1 and d = 1 (Fig. 3) we do not
find particularly good agreement between the spin model
simulations and the decoupling theory in the immediate
vicinity of the transition. This is due to the critical fluc-
tuations that occur on scales larger than those we can
treat. In 2D the agreement is surprisingly good.

In Fig. 4, we show Q for a spanning percolation cluster
for y = —0.3 for various p. In order to test the scaling
predictions we have plotted Qp®/2~! as a function of
mp_d‘/z. We took the value d; = 4/3. Our ansatz for the
fractal scaling is quite well obeyed.

In Fig. 5 we show the results of the reaction model for
1D for p = 0.001 in the form of a scaling plot. We find
good agreement with our decoupling theory, except for
a small region near the peak of the reaction-rate curve
(where there are the largest number of vacancies). The
width of the transition region ~ ,/p is well reproduced
by the decoupling theory, whereas MF would predict a
transition zone ~ p, namely about.30 times smaller.

In Fig. 6 we show a histogram of the distribution of A
and B domain sizes (weighted by the number of sites) for
d=1,p=0.05,y = —0.9. These data clearly display self-
organization: the distributions are quite different, with
a maximum for the B domains and a broad tail for the
A domains. This accounts for the departure of @ from
mean-field behavior.

V. DISCUSSION AND CONCLUSIONS

We have studied a model for catalysis of the form
A+ B — 0 in the case where the fast time scales are
adsorption and the reaction between species. Our cal-
culation uses a two-state spin model which we decouple
at the level of three-particle correlations. We address
the issue of spatial self-organization. Our solution gives
overall behavior that is qualitatively similar to MF the-
ory (transitions between saturated domains in A or B,

second order transition, etc.), but there is strong quan-
titative disagreement between the two. We find that the
width in z of the transition zone is much larger in the spin
model and this trend increases in lower dimension. The
reaction rate depends on the desorption probability in a
completely different way than in MF. It is much smaller
due to a spatial segregation effect. This segregation is
already present in the original FGZ model, where the
role of the two species was symmetric. We gave scaling
arguments to extend our scaling arguments to a fractal
structure.

Our refined theory gave a reasonable account of the
continuous transition to a poisoned state when one
species cannot desorb, though without critical fluctua-
tions, of course. We show again that the width of reac-
tion transition is affected by the desorption probability of
the other species. We presume that the critical behavior
of our model is the same as others with one absorbing
state [12] but we have not yet checked this by direct sim-
ulation, and it would be of some interest to do so.
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FIG. 6. Self-organization of the reactants illustrated with
the first moment, zn(z) of the domain size distribution n(z)
as a function of the size z for L = 16 384,p = 0.05,y = —0.9.
We choose z so that pa = pB.
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